Skip to content

Repository Mapยค

๐Ÿ“ pdearena/
    ๐Ÿ“ data/ # (1)
        ๐Ÿ“ twod/ # (2)
            ๐Ÿ“ datapipes/
                ๐Ÿ“„ common.py # (3)
                ... # (4)
    ๐Ÿ“ models/
        ๐Ÿ“„ registry.py # (5)
        ๐Ÿ“„ pdemodel.py # (6)
        ๐Ÿ“„ cond_pdemode.py # (7)
    ๐Ÿ“ modules/ #(8)
        ๐Ÿ“ conditioned/
            ...
        ๐Ÿ“„ twod_resnet.py
        ๐Ÿ“„ twod_unet2015.py
        ๐Ÿ“„ twod_unetbase.py
        ๐Ÿ“„ twod_unet.py
        ๐Ÿ“„ twod_uno.py
        ๐Ÿ“„ activations.py # (9)
        ๐Ÿ“„ loss.py # (10)
        ...
    ๐Ÿ“„ utils.py
    ...
๐Ÿ“ pdedatagen/
    ๐Ÿ“ configs/ #(11)
    ๐Ÿ“ shallowwater
    ๐Ÿ“„ navier_stokes.py
    ๐Ÿ“„ pde.py # (12)
๐Ÿ“ scripts/
    ๐Ÿ“„ train.py # (13)
    ๐Ÿ“„ cond_train.py # (14)
    ๐Ÿ“„ generate_data.py # (15)
    ๐Ÿ“„ convertnc2zarr.py # (16)
    ๐Ÿ“„ compute_normalization.py # (17)
๐Ÿ“ configs/ # (18)
  1. Everything data loading related goes here.
  2. Currently we only have 2D data support. But should be easy enough to add appropriate mechanisms for 1D, 3D and beyond.
  3. Common data pipe tranformations useful for building training and evaluation pipelines.
  4. Dataset opening data pipes for individual datasets.
  5. Model registry. Remember to register your new model here.
  6. LightningModule to support standard PDE surrogate learning.
  7. LightningModule to support time and parameter conditioned PDE surrogate learning.
  8. All the network architectures go here.
  9. Activation function registry
  10. Currently supported loss functions
  11. Configuration files for PDE data generation
  12. Register your new PDE configurations here
  13. Main training script for standard PDE surrogate training and testing
  14. Main training script for conditioned PDE surrogate training and testing
  15. Main script for generating data
  16. Supporting script to convert netcdf files to zarr for faster data loading
  17. Supporting script to compute the data normalization statistics. Add normalization methods for your data here.
  18. pytorch-lightning configs to run experiments.